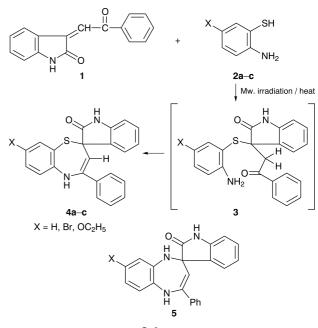
Microwave-induced One-pot Synthesis and Biological Screening of 8-Substituted 2,5-Dihydro-1,5-benzothiazepin-2-spiro-3'-3'H-indol-2'-(1'H)-ones

Anshu Dandia,* Mani Upreti, Babita Rani and Umesh C. Pant

J. Chem. Research (S), 1998, 752–753 J. Chem. Research (M), 1998, 3348–3355


Department of Chemistry, University of Rajasthan, Jaipur 302004, India

The concept of microwave-induced enhancement of organic reactions has been utilized in a one-pot synthesis of spiro[benzothiazepin-indol]ones.

3-Spiroindolines incorporating a 1,5-benzothiazepine ring at the 3-position of the 2-indolinone skeleton appear to be potentially bioactive compounds in view of the wide range of biological activities associated with both the 1,5-benzothiazepine and 3-spiroindoline^{2–5} heterocyclic nuclei. The microwave-oven induced enhancement of organic reactions is currently a focus of attention for chemists due to the decreased reaction times, improved yields and easier work up, as compared to conventional methods.³⁰

We have investigated the reaction of 1,3-dihydro-3-(2-phenyl-2-oxoethylidene)indol-2(1*H*)-one (1) with 2-aminobenzenethiols (2a-c) under thermal and microwave reaction conditions. Ethylene glycol was used as the energy transfer medium under microwave irradiation while the classical method involves reaction in ethanol staturated with hydrogen chloride gas. A comparison of the results obtained from the two synthetic approaches indicates that the effect of microwave irradiation is not purely thermal, besides giving decreased reaction times and improved yields.

In bioassay testing, the compounds showed activity against *Alternaria alternata*, *Fusarium oxysporium* and *Mycobacterium tuberculosis*.

Scheme

Compound	Yield (%) (time)				Found (Calc.) (%)		
	Classical ^a	MW ^b	Mp/°C	Formula	С	Н	N
4a	52 (6 h)	49 (15 min) 54 (8 min) ^ở 57 (7 min) ^e	165–167	$C_{22}H_{16}N_2SO$	74.1 (74.15)	4.5 (4.49)	7.91 (7.86)
4b	51 (4 h)	54 (10 mín) ^e	218	$C_{24}H_{20}N_2SO_2$	71.9 (72.0)	5.04 (5.00)	7.02 (7.00)
4c	62 (4 h)	65 (10 min) ^e	160	$\rm C_{22}H_{15}N_2SOBr$	60.8 (60.68)	3.51 (3.45)	6.40 (6.43)

Table 1 Analytical and physical data for 4a-c

^aClassical method; absolute ethanol + hydrogen chloride gas. ^bMicrowave method. ^cToluene + acetic acid. ^dEthylene glycol + conc. hydrochloric acid. ^eEthylene glycol + piperidine.

Table 2 Effect of synthesized compounds 4a-c on the radial growth of different fungi

		Radial growth of <i>Alternaria alternata^a</i> /cm Conc./ppm			Radial growth of <i>Fusarium oxysporium^a</i> /cm Conc./ppm			
4a 4b 4c	H OEt Br	3.30 3.30 3.30	1.80 1.70 1.70	1.50 1.20 0.70	3.50 3.50 3.50	2.80 2.00 1.80	2.00 1.20 1.33	

^aAverage of three replications.

Compound	Х	Inhibition(%)	Comments ^b
4a	H	100	MIC RMP = 0.25 μ g ml ⁻¹ , 98% inhibition <i>vs. M. tuberculosis</i>
4b	OC₂H₅	92	
4c	Br	97	

Table 3 Antitubercular activity^a

^aScreening of compounds **4a–c** was conducted at a concentration of 12.5 µg ml. ^bMinimum inhibitory concentration (MIC) of control drug for comparison.

Tehniques used: ¹H NMR, ¹³C NMR, IR and mass spectra

References: 30

Received, 2nd March 1998; Accepted, 1st September 1998 Paper E/8/01725E

References cited in this synopsis

2 G. Kobayashi and Y. Mastuda, Jpn. Pat. 7040894, 1970 (Chem. Abstr., 1971, 75, 20386g).

- 3 R. C. Schwartz, C. F. Hirsch, J. M. Sigmuna and D. J. Pettibone, US Pat. 4803217, 1989 (Chem. Abstr., 1989, 111, 132572h).
- 4 A. C. White, I. A. Cliffe and R. C. Todd, UK Pat. 2187739, 1997 (*Chem. Abstr.*, 1988, 108, 112482p).
- 5 D. W. Robertson, Eur. Pat. 178876, 1986 (Chem. Abstr., 1986, 105, 66459z).
- 30 S. Caddick, Tetrahedron, 1995, 51, 10403.